Gaudin functions, and Euler-Poincaré characteristics
نویسنده
چکیده
Given two positive integers n, r, we define the Gaudin function of level r to be quotient of the numerator of det ( ((xi − yj)(xi − tyj) · · · (xi − tyj)) )
منابع مشابه
Reduction in Principal Fiber Bundles: Covariant Euler-poincaré Equations
Let π : P → Mn be a principal G-bundle, and let L : JP → Λn(M) be a G-invariant Lagrangian density. We obtain the Euler-Poincaré equations for the reduced Lagrangian l defined on C(P ), the bundle of connections on P .
متن کاملA theorem of Poincaré-Hopf type
We compute (algebraically) the Euler characteristic of a complex of sheaves with constructible cohomology. A stratified Poincaré-Hopf formula is then a consequence of the smooth Poincaré-Hopf theorem and of additivity of the Euler-Poincaré characteristic with compact supports, once we have a suitable definition of index. AMS classification: 55N33 57R25
متن کاملThe Euler-Poincaré characteristic of index maps∗
We apply the concept of the Euler-Poincaré characteristic and the periodicity number to the index map of an isolated invariant set in order to obtain a new criterion for the existence of periodic points of a continuous map in a given set.
متن کاملAbout the Euler-poincaré Characteristic of Semi-algebraic Sets Defined with Two Inequalities
We express the Euler-Poincaré characteristic of a semi-algebraic set, which is the intersection of a non-singular complete intersection with two polynomial inequalities, in terms of the signatures of appropriate bilinear symmetric forms.
متن کاملAsymptotic Stabilization of Euler-poincaré Mechanical Systems
Stabilization of mechanical control systems by the method of controlled Lagrangians and matching is used to analyze asymptotic stabilization of systems whose underlying dynamics are governed by the Euler-Poincaré equations. In particular, we analyze asymptotic stabilization of a satellite. Copyright c © 2000 IFAC
متن کامل